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Abstract--Ardron (1980) presented both one-dimensional and two-dimensional analyses of wave pro- 
pagation in horizontal stratified two-phase flow. He compared the two approaches and concluded that the 
comparison helped to improve confidence in the use of one-dimensional approximations for the analysis of 
complex systems such as nuclear reactors. 

There are several assumptions in Ardron's developments. When alternative assumptions are made the 
results change. By examining the consequences of several possible assumptions we have learned from this 
example that considerable care may be necessary in the reduction of a multi-dimensional two-phase flow 
problem to a simpler form. 

This paper presents a more complete two.dimensional solution of this problem and discusses the 
limitations of the approximate solutions. 

INTRODUCTION 

A current topic of debate in the technical community is the degree to which two-phase flow 
phenomena, that are usually multidimensional in character, can be modeled by using a 
one-dimensional approach. A good way to illustrate the features of this problem would seem to 
be to obtain both complete and approximate solutions to some relatively well-defined situations 
and examine the conditions under which the former can be reduced to the latter. 

One of the first significant attempts to work out a complete example on these lines is the 
recent paper by Ardron (1980). He reviews some of the background literature and applications 
and develops solutions for the case of wave propagation in the horizontal stratified flow of a gas 
over a liquid. 

In studying Ardron's paper we were puzzled by a few features that led us to extend his 
approach and, in some instances, develop alternative assumptions or more complete deriva- 
tions. The main contributions of the present paper are: 

(!) Demonstrating that there are many possible alternative assumptions that can be made to 
develop ad hoc one-dimensional constitutive equations, and that these lead to different 
dispersion relationships for the waves. 

(2) Development of a more complete two-dimensional solution that incorporates a class of 
vertical density variations in the steady perturbation variables without the need for the 
introduction of specific assumptions about the ratio between the speeds of compressibility and 
gravity waves. 

(3) Averaging of the two-dimensional solution to obtain the proper form of the variables for 
use in the one-dimensional model. These variables satisfy the one-dimensional conservation 
equations but are not generally identical with the same variables derived from ad hoc 
assumptions. 

(4) Clarification of several aspects of Ardron's two-dimensional solution. Since our ap- 
proaches are similar to Ardron's, except for the details, we have used his nomenclature 
throughout (even to the extent of adopting the nomenclature of his appendix, that differs 
slightly from the body of his paper, in the appendix to this paper). A few additional symbols are 
explained when they are introduced. 
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ARDRON'S ONE-DIMENSIONAL SOLUTION 

Ardron starts from one-dimensional forms of the equations of conservation of mass and 
momentum for two stratified fluids with uniform properties and no heat or mass transfer: 

~(~,o~)+ (~jO~) = o I l l  

- a__O.t - d__~ + ai ~ _ ( p ,  _ ~i) ~_~ = O." 
ajpj 8t + a,~,U~ 8x ax [21 

He relates the interface pressure P* to the average pressures in each phase by 

P *  = PG + l l 2 a a p c g H  = PL - i /2aLpLgH [31 

and uses the speeds of sound to relate changes in the mean density to changes in the mean 
pressure: 

~, = [~,lc~. [4] 

He substitutes for /~i in [2] using[3], neglecting the x-derivatives of pa and pL, although[4] 
shows that they should be related to the derivatives of pressure. His resulting equation[3], 
when the common factor a t is removed, is 

f~i at + pioi  Ox aX - vis Ox [51 

where the positive sign applies to the equation for the liquid phase. 
Ardron uses a perturbation technique to solve[I], [4], and [5] for fluctuations in P*,  pl, a i 

and 0 i. Since P* does not appear in [4] he must have made some assumption or substitution 
that is not explained in his paper. We have concluded that he probably made the assumption: 

£ 

P* -~ P~ [61 

in order to derive his dispersion relation that we prefer to write in the more obviously 
symmetrical form: 

.p ( ) = I C ;  

aal.ta" al.l.tt" i.tL" IzG 
[71 

.p • .~ 

with oJ i = ~ - Uiok and #i" = (k: - o,;/c'~). 
In essence, Ardron solves the problem in which the phase pressure fluctuations are regarded 

as equal, with gravity appearing only in the additional "force due to void fraction gradient" that 
appears in [5], much as it appears in the example in Wallis (1969). Indeed, [7] can be obtained 
from [6.102] in Wallis (1969) by putting fry,, = p~gH, f , v ,  = p:gH,  vl = v~ - c, re' = v2 - c. This is an 
interesting case but it is not clear that the assumptions made to reduce the equations to this 
particular form are appropriate for the stratified flow problem under consideration. The basic 
problem is how to relate the effective forces acting on the phases to the variations in mean 
density and void fraction--i.e, to deduce the "constitutive equations". 

ONE-DIMENSIONAL CONSTITUTIVE RELATIONS 

Since [4] relates density changes to the actual average phase pressures, 6j, it seems 
unnecessary to introduce P* into the equation set. Accordingly, we prefer to use [31 to 
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substitute for the final term in [2] and obtain 

[8] 

The factor a t can be removed from [8] by division. 
There are eight unknowns in [1], [4], and [8]. In order to obtain a set that can be solved we 

need to use the kinematic constraint: 

aG + aL = I [91 

as well as some form of constitutive relationships that relate "forces", in the form of ibG, /iL, 
P*, pjgHdj, to changes in density (or concentration) in the form of ~G, ~L and d e This is the 
point at which the solutions diverge because many alternative assumptions can be made about 
these relationships, in the absence of a more complete theory based on the multidimensional 
solution. 

For example, instead of using [6] we can use the complete perturbation of [3] in which aL, 
aG, PL and PG are all allowed to vary. It could also be realized that the densities Pi that appear in 
[3] are not the average densities across the entire flow but correspond to a mean density 
between the interface and some average point in the flow. Another approach is to assume that 
Pj is not equal to the perturbation in interface pressure but instead is equal to the perturbed 
pressure along some "typical average streamline" in the flow, which could be, for example, the 
top and bottom of the channel, or the mid points of each phase. 

In this way we have derived many different forms of dispersion relationships, all of which 
resemble [7] but contain additional terms or factors on both sides of the equation. As might be 
expected, these factors often take the form (1 -+ ngHa/q'), where n is a number, and indicate 
that we are dealing with corrections of order gHIq:. However, it is not adequate to replace 
these factors by unity and all of the expressions do not reduce to [7l to first order in gH/c/. We 
will not repeat all these solutions in this paper (they should be available in a thesis by the 
second author) but it is worthwhile to indicate one of the features that emerges. When a term 
on the I.h.s. of [71 is multiplied by a correction factor such as (I + ngHai/q') the second part of the 
expanded term is 

#;cf 

which is comparable with terms on the r.h.s, of [7] and should be retained. 
Since the main theme of this paper is the inadequacy of one-dimensional approaches to this 

problem (resulting from the fact that transverse compressibility waves must exist under almost 
all conditions in at least one of the phases) we will not describe these alternative solutions 
further. It will suffice to show that at least one "reasonable" solution, namely [7], is not 
compatible with the reduction of our two-dimensional solution to one-dimensional form. 

THE TWO-DIMENS1ONAL SOLUTION 

We seek solutions to the problem posed by Ardron but avoid making any simplifying 
assumptions until the "general solution" has been obtaiqed. We start with Ardron's equations 
[9] and perturb them without any change in coordinate system. Moreover, we allow there to be 
density gradients ~po]Oy in the vertical direction in the unperturbed state, since it is unlikely 
that vertical compressibility effects can be ignored if H is large enough for gravitational effects 
to interact with horizontal compressibility effects. 
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The continuity equation becomes, to first order in perturbations. 

\ Ox Oy I dx t Oy 

while the x- and y-components of momentum conservation are 

[10] 

with: 

A~ i,A, i = -  a~+ +- +p.~'] = b  t±A t 

Using [17] the solutions [14] and [15] become 

p / =  ( ~ ) e l ' , ' ( A t  e~,' + B~ e-~, ') 

i bY . '=-e,[(_=-~,AOA, eA,'+(~-A,)B,e-~, '  J. ti k t',,2c; 

[181 

[191 

[2ol 

po~-fit ÷ po~Uoj ax = ax [1 !] 

+ p o j U o j  " Pot st ax = - ay - p~ [I 2] 

Using /~j = J~/c/ to relate density and pressure fluctuations, we seek a solution in which 
c/ = constant - which would normally require that each phase be isothermal. Under this 
condition the ideal gas law yields 

I a p. j= ! [aP_~'~__ 1 _g_.= [131 

(For the mathematical developments that follow it is not necessary that the phases be 
isothermal perfect gases, merely that c t and (,)p./ay)/p. t be constant). 

Using the plane wave perturbation the conservation equations now reduce, in terms of the 
constant a t, to 

vj =~. at+ . '+Ty ui [151 

[ (  a,g . , \ _ (  ~ )  ,9 ,~-'1 a/+~-.tl~- 2a ,+ -  ~+-~y..ju/=O. il61 

The solution of this second order homogeneous equation [161 is 

u/= Ate": + Bt e ' : :  = e":(A i e A,' + Bi e ' : )  [171 
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The perturbations thus have a y-dependence that consists of an exponential decay (or growth) 
and a trigonometric or hyperbolic term. 

The constants A t and B i are determined by application of the boundary conditions, as 
follows. The vertical fluctuation velocities must vanish at the walls: therefore: 

ca' = 0 at y = he; VL' = 0 at y = - h L .  

Also they must be compatible with the motion of the interface, ~ = ~' exp i(~t - kx), and so we 
require 

where to first order in perturbations we may evaluate v /a t  y = 0. 
Using [19] and [20] these three conditions become 

(2~CL.+ A,.)A,e-".".+(2~CL -A,.)BLe".h'.=O [22] 

. l  

I 

The final boundary condition is that the difference in pressures at the interface be balanced by 
surface tension, or: 

I d2h [241 (Pao+/;a) - (Pro+ 13L) = cr'~x.. 
y-4 ~-,i 

Assuming unperturbed hydrostatic pressures Poj(Y) = Po* - p~gY near y = 0 and evaluating the 
perturbed pressures [19] at y --0 (a first order approximation that can be justified by expanding 
to higher order terms in ~), [24] becomes 

~'g(P,. - Pc) + ~ (Ac; + Ba) - e . ~  (AL + Bt.) = -o'k2T? '. [25] 

The boundary conditions [21], [22], [23] and [25] form a homogeneous linear equation set for the 
constants A i and B r When the system determinant is set equal to zero the resulting dispersion 
relation is 

P ~ .  Aa coth (A~hc;) + ~ t . .  ;~L coth (;~LhL) 

O01" • = ~ - P c  I+ +~rk'. g PL I + 21~L'CL" LlzG'Ca'/J 
[261 
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Using the definitions of oJ~ and u.j the r.h.s, of (26] can be rearranged to 

DERIVATION OF ONE-DIMENSIONAL AVERAGES OF 
THE TWO-DIMENSIONAL VARIABLES 

If we take the first term in the expansion of the hyperbolic cotangent terms in [26] (not 
strictly a "long wave" approximation since, in addition to khi being small, we must also have 
o~ih/cj ,~I and gh/q" ~ !) we obtain the I.h.s. of [71. However, the gravitational terms on the 
r.h.s, are not compatible. This indicates that something has been left out of the one-dimensional 
model that it may be impossible to include without resorting to some approximate treatment of 
the y-variations in the flow, as was done in a simpler incompressible flow example by Banerjee 
(1980). 

We may assess the errors introduced in approximation by using the two-dimensional 
solution to derive the true expressions for the "averages" that appear in equations [I] to [4]. 
Since we are going to use a perturbation technique we also need to compute the "perturbations 
of the averages". For a general variable defined as in Ardron's [41. 

~ =  ~o+ ¢ 'e  "'°' "' [271 

we are interested in 

f [  ffdy 

~b i'e"''' ~ " = ~ i - ~ , i  = h i_7 / 
f f '  @'~i dy 

hi 
(281 

which to first order in rl = o ' e ' " '  k~, becomes 

~bi' dY idY n' 
(291 

where ¢Jo* is the value of d,o at the two-phase interface, y = 0. The second term in [29l is zero 
for all variables that are uniform in the unperturbed state but it cannot be neglected when ¢~u is 
a function of y, as is the case with the pressure. 

Using [211 to [231 to determine A i and B i and substituting in [17] we obtain, using the 
definition of Aj in [18], 

~' /.ti- 

At y = 0 this reduces to 

[30} 

u~ = ~ ( ~ At c oth Aih j -2 q-~g') r/' /h" \ 
[31] 

where the upper sign refers to the lighter phase. 
Using [31] in [14] and realizing, as in [24], that the perturbation at the interface is the sum of 

the "in place" perturbation and the change due to the motion of the interface in the 
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"unperturbed" field we obtain the pressures along the interface as 

.) 

P ~ *  = -pongv)  - Poa l~ coth A~h~ r/ [321 

, oL-(  ) 
P'L * =  -Pot.gT! - POL--~ - AL COth AL h t  Ti' [33] 

from which the dispersion relation [26] follows. 
To obtain the perturbations in the averaged "one-dimensional" variables we use [29], 

substituting for u / f rom [30], using [14] to obtain p/ and deducing the density perturbations 
¢ P 2 from pi = pj Ic~. The resulting perturbations in the averaged variables are, if aj = 0 (no initial 

vertical density gradient), 
) 

~ =  ~- ktoj [34] 
hj~/' 

- 2 
~-~-- ~ ~ -  P~g [35] 

~ = • [36] 
n ~ f  c f  

while the perturbations in volume fraction are: 

.~  = _  I [371 
7?' ÷ H  

The final term in [35] is a consequence of the final term in [29] and is related to the final term 
in [2]. The existence of this term explains why one cannot derive [2] by merely placing 
"averaging" signs over the terms in the differential x-direction momentum equation. 

It may easily be checked that the parameters in [34]-[37] satisfy identically the plane wave 
versions of the perturbed forms of [I] and [2], namely 

e a/oi~/ + po~toia ~ - a~po~k~/ = 0 [381 

and 

a~l~)itoi~j' - a jk# /  + k a / (  +- 112a~pojgH) = 0 [391 

This confirms the validity of the one-dimensional averaged conservation laws. One key 
difference from Ardron's solution is that we do not  have 15/= ~6~'c~ but, instead, from [35] and 
[361 

p / +  = [401 

This result could probably not have been foreseen with confidence, from ad hoc arguments, it is 
a consequence of the second term in [29], that plays a role in the evaluation of the mean 
pressure fluctuation but does not influence the mean density fluctuations, as long as we assume 
that there are no initial vertical density gradients. 

The more realistic model in which each phase is treated as an ideal gas obeying [13] and is 
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allowed to be both statically and dynamically compressible does satisfy jS/= ~/Ic~ (but only it" 
the dynamic compression follows an isothermal path, or more generally if (c~p'/0p') = (0Po/09o)). 
so [40] could be regarded as resulting from an inconsistent initial set of assumptions. However, 
in this case, the expressions for ~/,/~j', and Pi' are much more complicated and, since 9oj is not 
uniform, we need to use some average value. Poi, in [38] and [39]. Moreover, when Poi depends 
on y, we may need to be more careful in evaluating the "averages of products" that appear in 
the precursors of [I] and [2], particularly when deriving the perturbed equations. 

Even with these insights we cannot determine the "one-dimensional" dispersion relation 
without using the boundary condition satisfied by the interfacial pressures. Assuming A~h i ~, I 
we obtain from [32] and [33] 

P'~' = - poigTl - poj ~.~ +_ ~' [41] 
/.t i 

which leads directly to the dispersion relation: 

#~'a~ ~L'aL= 2 pL(I+ . - - p ( ; ( l + ~ / j  [42l 

when the two interracial pressures are assumed equal. 
Comparing [41] with [35] it follows that 

I.Zi'Ct'/ 

which could not be deduced from the purely hydrostatic pressure variation assumed by Ardron. 
[401 and [43] are correct to first order in ~' and differ from [4] and [6]. While it may be 

possible a posteriori to discover what assumptions could have been made to derive these 
results from a one-dimensional approach, it is unlikely that this could have been performed a 
priori until the more comprehensive result was available for comparison. 

We know of at least one set of assumptions about the one-dimensional constitutive 
relationships which will lead to [42] by following the procedures discussed at the beginning of 
this paper. However, the assumptions are made with hindsight and cannot be rigorously 
justified. 

Ardron (1980) concluded that his work "gave confidence in the use of these standard 
two-fluid equations for general application . . . . . . .  ". We are rather less optimistic since several 
of our results have served to illustrate the pitfalls that may be encountered on an oversimplified 
one-dimensional pathway of approach to what is essentially a two-dimensional problem. It is 
comforting, however, to note that the one-dimensional conservation laws [1] and [2] are valid 
for this case. The problem lies in the "effective constitutive equations" that describe the 
relationships between the characteristic stresses, /5 i and P~* and the "concentrations", t~i and 
ai; these define an effective "compressibility" for the two-fluid mixture that depends on the 
details of the flow pattern as well as the exciting frequency and needs to be evaluated carefully 
for each particular case. 
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APPENDIX 

Correc t ions  to Ardron' s t w o . d i m e n s i o n a l  solution 

If we apply the method used in [10]-[26] of this paper to the two-dimensional problem 
addressed by Atdron 0980) in the Appendix of his paper, in which he neglects the/~jg term in 
[12] and assumes that a t = 0 (uniform initial density), we obtain the dispersion relationship 

PL °°C coth (/J.LhL) + P(;~°G" coth (tzGhc;) = trk: + g(PL -- PG) 
,UL ~ G  

[441 

This differs from Ardron's [A9] and is it of interest to discover why. The explanation may be 
found by carefully reviewing his derivations. 

The terms involving pressure in the second of his [A2] should read 

g \ Ox - 711 dy' )" [45] 

where 7/i = O~lOx. 

In the transformed coordinates his [A3] is, by direct substitution, 

Pip = Po* - (Y' + ~)p~og [461 

where we have introduced the notation Po* to indicate 
unperturbed interface. 

Putting P~ = Pip + ~Pj' in [451 and using [46] gives 

that this is the pressure at the 

Pi - OX' Piog ~" c~X' - ~l ~. 9y' ] J" [471 

Since O~[Ox' is the same as ~j, the term involving gravity disappears from [47] and it becomes 

k Ox' - n, [481 

which is no surprise--it merely the expression of the r.h.s, of [I I] in the transformed coordinate 
system, divided by the density. Since the second term in [481 is of second order, we conclude 
that the equation of motion in the x-direction is unchanged, to first order, by the coordinate 
transformation. In fact, we believe that to first order, the three equations represented by 
Ardron's [A5] should be ident ical  with the similar formulation derived from [10] through [12] in 
the original coordinates. 

For the boundary condition at the interface we have 

Pt. - Pa = -czO'rl  IÙx'.  [49] 

Since P~ = P~o + ~p/and P~o is equal to Po* - effp~og at the interface, [491 becomes 

PL' -- v f  PLog -- PC;' + q'PGOg = OrO'Tf / Ox 'z. [5Ol 

[50] is a relationship between physical variables that is independent of the coordinate system 
and is not changed by any  coordinate transformation (except perhaps for the form of the 
curvature term). Ardron's [A6] should include the ~' terms in [50], and have just the same form 
as one would obtain from [24] in the untransformed coordinates. 

MF V¢4. 9. No. 3.--i 
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We conclude that the problem, as formulated in transformed coordinates, is identical, in 
both equations and boundary conditions, to the problem posed in the original coordinates, as 
long as only first order terms are retained. 

In order to obtain an interface boundary condition and an x-direction momentum equation 
resembling Ardron's we must make a transformation in perturbed pressure, defining 

p ~ w 

r;~ = p~ - gp~n . [51 ] 

In terms of the variable ~/, [50] assumes the form of Ardron's interface condition. The 
x-momentum equation (the second of his [A5]) also assumes his form and the y-direction 
momentum equation is unchanged. However, in the continuity equation we now have to use 

p / :  e.( = ,;,' + ,#p:' [521 
c; c; 

so that the first of Ardron's [A5] becomes 

9:;  \ dt %O ax, ) + Ox ay c; ~ Ot 

If we follow his solution procedure we find that the first of his [A?] picks up an additional term 
and becomes 

leading to the solution 

and, eventua l ly ,  to [44l. 

ico~( :rj + gPi:7) - ipf:k:~ : -pic~" d t~/dy [541 

fii = B*i e"'V+ B:je ~":-pjilg 
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ADDENDUM 

An assumption made by Wallis & Hutchings (1983) and by Ardron (1980) is that perturbations 
in density are related to perturbations in pressure by¢ 

,s A 

Pi = q'Pi. [I] 

This is not valid, in general, because physical property relationships apply to particles of fluid 
and not to a given spatial location. A particle of fluid that moves to a different elevation as a wave 
passes will experience a pressure change 

dPo . d P =  ~ ay +dI 5 [2] 

The corresponding density change will be 

dP I dPo.  d/~ 
dp= c--r = ~--~-y uy + "--"'c" [3] 

Since, in general, the density change can also be expressed as 

dy + d# [4] do 

it is clear that [I] is only compatible with [3] and [41 if 

dPo dd~ [51 dy -- c" . 

Equation [5] is the condition for a neutrally stable atmosphere and is equivalent to requiring a 
particular value of a~ in [131 of Wallis & Hutchings (1982), namely 

"1 

a~ = - gl q" . [61 

It appears that the theory is only valid for perfect gases if waves can be regarded as propagating 
isothermally. 

Equation [6] is also the condition for gradients of pressure and density to be parallel and assures 
that the flow is irrotational. 

Furthermore, [6] is a necessary condition for the dispersion relation [26] in Wallis & Hutchings 
(1982) to be equivalent to a condition of equipartition of energy. We define the following energy 
integrals for the perturbations over the volume of fluid in one wavelength (all evaluated to second 
order): 

K i n e t i c  energy  

C o m p r e s s i v e  energy  

- "  

EL = (lii:+ ~'~') dx dy. 

E =ff dx v 
J J - c i ' P i  " . 

÷The nomenclature of the original paper is used. 
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Gracitational energy 

Surface energy" 

dr/ -'_w. ot "/?L ,2 

Substituting the solutions given in [31]-[35] of Wallis & Hutchings (1982) in these expressions, 
we find that their dispersion relation [26] is identical with 

Ek = E,. + E~ + E~ [71 

for the particular case in which [6] is valid. The mean kinetic energy of the motion is equal to the 
sum of the mean energy "stored" by the three restoring forces. 
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